Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This article addresses the kinematic control of a redundant soft robotic arm. Full pose kinematic control of soft robots is challenging because direct application of the classical controllers developed based on rigid robots to soft robots could lead to unreliable or infeasible motions. In this study, we explore the manipulability property of a soft robotic arm and develop an advanced resolved-rate controller that prioritizes position over orientation control and switches its modes and gains based on position and orientation manipulabilities, enabling stable motion even when the robot is close to the singular configurations. The simulation and experimental results indicate that our proposed method outperforms previous methods in terms of both accuracy and smoothness during operation.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Climate warming can induce a cost-of-living “squeeze” in ectotherms by increasing energetic expenditures while reducing foraging gains. We used biophysical models (validated by 2685 field observations) to test this hypothesis for 10 ecologically diverse lizards in African and Australian deserts. Historical warming (1950–2020) has been more intense in Africa than in Australia, translating to an energetic squeeze for African diurnal species. Although no net impact on Australian diurnal species was observed, warming generated an energetic “relief” (by increasing foraging time) for nocturnal species. Future warming impacts will be more severe in Africa than in Australia, requiring increased rates of food intake (+10% per hour active for diurnal species). The effects of climate warming on desert lizard energy budgets will thus be species-specific but potentially predictable.more » « lessFree, publicly-accessible full text available January 17, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Understanding the relationship between the environment parents experience during reproduction and the environment embryos experience in the nest is essential for determining the intergenerational responses of populations to novel environmental conditions. Thermal stress has become commonplace for organisms inhabiting areas affected by rising temperatures. Exposure to body temperatures that approach, but do not exceed, upper thermal limits often induces adverse effects in organisms, but the propensity for these temperatures to have intergenerational consequences has not been explored in depth. Here, we quantified the effects of thermal stress on the reproductive physiology and development of brown anoles (Anolis sagrei) when thermal stress is experienced by mothers and by eggs during incubation.Mothers exposed to thermal stress produced smaller eggs and smaller offspring with reduced growth rates, while egg stress reduced developmental time and offspring mass. Hatchling survival and growth were negatively affected by thermal stress experienced by mothers but not by thermal stress experienced as eggs. We found mixed evidence for an additive effect of thermal stress on offspring; rather, thermal stress had specific (and most often negative) effects on different components of offspring phenotypes and fitness proxies when experienced either by mothers or by eggs. Stressful body temperatures therefore can function in a similar manner to other types of maternal effects in reptiles; however, this maternal effect has predominantly negative consequences on offspring.more » « less
-
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract We present panchromatic optical + near-infrared (NIR) + mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from +11 to +42 day past maximum light. We detect forbidden emission lines in the MIR at these early times while the optical and NIR are dominated by permitted lines with an absorption component. Panchromatic spectra at early times can thus simultaneously show nebular and photospheric lines, probing both inner and outer layers of the ejecta. We identify spectral lines not seen before in SN Iax, including [Mgii] 4.76μm, [Mgii] 9.71μm, [Neii] 12.81μm, and isolated Oi2.76μm that traces unburned material. Forbidden emission lines of all species are centrally peaked with similar kinematic distributions, indicating that the ejecta are well mixed in both SN 2024pxl and SN 2024vjm, a hallmark of pure deflagration explosion models. Radiative transfer modeling of SN 2024pxl shows good agreement with a weak deflagration of a near-Chandrasekhar-mass white dwarf, but additional IR flux is needed to match the observations, potentially attributable to a surviving remnant. Similarly, we find SN 2024vjm is also best explained by a weak deflagration model, despite the large difference in luminosity between the two supernovae. Future modeling should push to even weaker explosions and include the contribution of a bound remnant. Our observations demonstrate the diagnostic power of panchromatic spectroscopy for unveiling explosion physics in thermonuclear supernovae.more » « lessFree, publicly-accessible full text available August 13, 2026
-
We present a novel configuration to generate strong acoustic streaming vortices by a pinned oscillating membrane in a microchannel, its characterizations via advanced measurement techniques, and initial studies in application by augmentation of gas exchange across a permeable membrane towards microfluidic artificial lung technology. The configuration is stable over time and does not create any obstruction in flow passages. For an audible- frequency 20 Vpp input to a piezo buzzer, streaming velocity was measured up to 47 mm/s. Mixing from helical flow patterns in the microchannel augments gas transfer rate across the membrane up to 3.4 times compared to no actuation, allowing larger channel dimensions (better facilitation of scale-up manufacturing) and reduced shear (more hemocompatible) in microchannel-based artificial lung systems.more » « less
An official website of the United States government

Full Text Available